<$BlogRSDURL$>
Science News and Notes
Tuesday, February 22, 2005
 
Chemical Analysis Of Mushrooms Shows Their Nutritional Benefits

Source: University Of Illinois At Urbana-Champaign
Date: 2005-02-22
URL: http://www.sciencedaily.com/releases/2005/02/050218161310.htm

CHAMPAIGN, Ill. -- An analysis of previously uncharted chemical contents, mostly carbohydrates, in U.S.-consumed mushrooms shows that these fruity edible bodies of fungi could be tailored into dietary plans to help fill various nutritional needs.

Using modern analytic tools, scientists at the University of Illinois at Urbana-Champaign found that the six mushroom varieties tested -- in raw and cooked forms and at various harvest times and maturity levels -- are rich in total dietary fibers, including those associated with cholesterol-lowering (chitin) and healthy hearts (beta-glutan).

The findings appear online in advance of regular publication by the Journal of Agricultural and Food Chemistry. The same researchers last year reported in the same journal the carbohydrate profile of selected plum and prune products. The findings will become part of the U.S. Department of Agriculture's National Nutrient Database.

"What we've reported in these papers are the complete carbohydrate profiles of these two lines of popular foods," said George C. Fahey Jr., a professor of nutritional sciences in the department of animal sciences at Illinois. "These profiles include the digestible carbohydrates, the starches and the fermentable fibers that reach the large bowel. This work was important to the two commodity organizations that funded this research, because they had little information on these components." It was already known that mushrooms offer high-quality protein, vitamins, unsaturated fatty acids and fiber, but a precise carbohydrate breakdown had been elusive.

The mushrooms studied were white button, crimini and portabella, all of which represent different maturity levels of Agaricus bisporus, and maitake (Grifola frondosa), shiitake (Lentinus edodes) and enoki (Flammulina velutipes). The latter two mushrooms were analyzed only in their consumed cooked form.

"The maitakes and shiitakes tended to be very similar in their nutrient concentrations, and quite a bit different than the others," said Cheryl L. Dikeman, a doctoral student in Fahey's lab and lead author on both papers. "Portabellas were off on their own in terms of their contents of oligosaccharides, beta-glucans and chitin."

Chitin concentrations were 8 percent in raw, mature portabellas and 6 percent in raw, immature ones. When cooked, chitin content fell to 2.7 percent in both forms, but their levels of total dietary fibers went up significantly. Also showing the same pattern were raw enokis, which had a 7.7 percent chitin content; cooking also lowered it to 2.7 percent but total dietary fibers jumped from 29.3 percent in raw to 41.6 percent in cooked. Raw, mature white buttons and cooked, mature shiitakes boasted chitin levels of 3 percent and 3.6 percent, respectively. Raw, mature portabellas also had the highest level of beta-glucan (0.2 percent), while most of the other mushrooms had 0.1 percent. Enokis and maitakes had none. Relatively small amounts are required to provide cardiovascular benefits, Fahey said.

Cooking tended to increase starch, total dietary fibers and fat contents and to decrease chitin concentrations in all of the mushrooms. "Some nutrients went up after cooking, while some went down," Dikeman said. "Part of that you'd expect to happen as water is cooked out."

Also measured were oligosaccharide levels. These sugar molecules are only partially digestible, but the undigested components are considered prebiotics in that they elicit growth of healthful bacteria in the colon. Raw, immature portabellas had a total oligosaccharide concentration of 5,272 micrograms per gram (ug/g). Also found to have more than 1,000 ug/g were raw, mature portabellas and cooked, immature crimini. None were detected in enokis, maitakes or shiitakes. Most of the total oligosaccharides were in the form of glucooligosaccharides, but fructooligosaccharides (FOS) accounted for the total concentrations in cooked, immature white buttons. FOS did not appear in other samples. In other findings: White buttons had the highest levels of ash; starch was highest in maitakes and shiitakes; and crude protein and acid-hydrolyzed fats were highest in crimini, white buttons and maitakes.

For plums and prunes, which are known to be good sources of dietary fiber, the researchers analyzed individual carbohydrate components that are in the various forms used by consumers: powders, juices, purees and fruits. They also looked at the waste byproducts, including dried plum pits. All of the prune/plum products were found to have high total concentrations of oligosaccharides and free sugars. High in total dietary fibers as a percentage of total dry-matter were generally the various powder and fruit products.

The research primarily involved the use of high-performance liquid chromatography, which was adapted by Laura L. Bauer, a research specialist in animal sciences and a co-author on both papers, to quantify chitin concentrations in each mushroom. A spectrophotometer was used to analyze beta-glucan levels and sort out uronic acids that are associated with total dietary fibers. The information obtained in the two studies, Fahey said, will allow people to choose the mushrooms and forms of plums and prunes that provide the dietary punch they may be needing. It also should allow food scientists to search for optimum preparation strategies for using the various products.

###
The Mushroom Council of Dublin, Calif., funded the mushroom study and provided the samples. The plum/prune study was done with samples and funding provided by the California Dried Plum Board. Elizabeth A. Flickinger, a former postdoctoral researcher in Fahey's lab, also was a co-author on the plum/prune study.***
Thursday, February 03, 2005
 
Scientists Find Missing MatterĀ 
By Amit Asaravala - Wired News
Story location: http://www.wired.com/news/space/0,2697,66487,00.html
02:00 AM Feb. 03, 2005 PT
For years, astrophysicists have been boggled by the fact that the grand sum of all the known "normal" matter in the universe -- that which makes up the stars, the Earth and even our own bodies -- only amounts to half of what should exist based on computer simulations.

Given that multiple simulations have continually yielded the same result, they theorized that the rest of the normal matter, known as baryons, must be hiding somewhere in the space between galaxies. However, they haven't had much evidence to support the theory until now.

A new study conducted with the help of the Earth-orbiting Chandra X-ray Observatory has revealed the existence of baryons in at least two giant, intergalactic clouds of super-hot gas 150 million and 380 million light-years from our planet.

The study, which appears in the Feb. 3 issue of the journal Nature, shows how certain wavelengths of X-rays emitted from a distant galaxy in the constellation Ursa Major are being absorbed by the two clouds. The absorption pattern, as detected by Chandra, is consistent with interference caused by carbon, neon, nitrogen and oxygen ions -- in other words, baryons.

When the study's authors extended the number of baryons in the two clouds to account for the volume of all the intergalactic clouds in the universe, the resulting figure equaled that of the missing matter from their computer simulations. "Assuming that what we see is a standard portion of the universe, we extrapolated the data and derived the volume density (of baryons in all the clouds) -- and it's consistent with 50 percent," said astronomer Fabrizio Nicastro, of the Harvard-Smithsonian Center for Astrophysics and lead author of the study.

The findings extend the reach of a similar study published by Nicastro and his colleagues in 2003. In that research, the scientists discovered baryons between galaxies in the Local Group, a selection of 30 galaxies near to, and including, our own Milky Way. But astrophysicists weren't sure at the time if the data would apply to intergalactic spaces outside the Local Group, so they kept searching.

Even with the new evidence, they plan to keep looking, said Nicastro. That's because intergalactic baryons not only fill a gap in scientists' understanding of the universe, but they may also lead to a better understanding of "dark matter," a mysterious and unseen form of matter that has so far only been detected by the gravitational pull it exerts on other bodies in the universe. "If we are right, each single one of these filaments is connected to a cloud of dark matter," said Nicastro. "If there wasn't dark matter there, or something with strong gravity that pulled on the matter in these filaments, we wouldn't have galaxies or filaments." Rather, the baryons would be pulled into galaxies and the galaxies into each other.

Whereas baryons account for 4 percent of the total matter and energy in the universe, dark matter is thought to make up 23 percent. The remaining 73 percent of the so-called matter-energy budget consists of what scientists call "dark energy." This energy acts like an anti-gravitational force that, in theory, is causing the universe to expand rather than contract. Nicastro and his team used the Chandra X-ray Observatory to search for traces of the baryons because X-ray light from space does not reach Earth-based telescopes. They are too hot and too diffuse in the intergalactic clouds to be detected by optical telescopes.

Chandra was released from the space shuttle Columbia in 1999. NASA is currently developing a series of four satellites known as Constellation-X that would enhance astronomers' ability to study baryons, dark matter and dark energy. It is expected to launch no sooner than 2015.
***

Powered by Blogger